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INTRODUCTION

Recent analytical and experimental work 1,2 has successfully demonstrated active noise

and vibration control in cylinders using extended piezoelectric actuators. Extended

piezoelectric actuators, consisting of pre-positioned patches of piezoelectric material, have

the potential of reducing control spillover, without necessarily increasing the number of

control degrees of freedom. In the cases considered previously, the distribution of optimum

actuator input voltage was determined for each discrete frequency of interest. There are

several limitations with this type of control implementation. First, the optimum location

and number of actuators in an extended array are a function of the excitation frequency.

That is, in order to maintain control over the structural/acoustic modes excited at different

frequencies, it is necessary to relocate and/or change the number of actuators. Secondly,

actuator arrays with more control dements require controllers with additional degrees of
freedom.

To overcome these implementation problems, this paper proposes using a neural

network 3 to determine which piezoelectric actuators, in an extended array, are activated

for control at a particular frequency. The concept is demonstrated using a cylinder/cavity

model on which the control forces, produced by piezoelectric actuators 1, are applied in

order to reduce the interior noise. The two layer neural network, driving the piezoelectric

actuators, consists of an input layer, a hidden layer, and an output layer of processing

nodes. The interconnection nodal weights, determining the contribution of each processing

node, are calculated by a standard back-propagation technique, such that minimum

pressure is achieved at a number of error microphones located inside the cylinder.

Predicted results are compared with the results calculated by a conventional, least-squares

optimization analysis 1. The ability of the neural network to accurately and efficiently

control actuator activation for interior noise reduction is therefore demonstrated.

ANALYSIS

The structural acoustic model 1, shown in figure 1, consists of an aluminum cylinder

of diameter, D : 1.68ra, length, L : 3.66m, and thickness, h : 1.7ram. The cylinder

is closed with hard (rigid) end caps and is assumed to have simply-supported boundary

conditions. The offending primary noise field inside the cylindrical cavity is produced by

the wall vibrations excited by a single, harmonically varying, acoustic monopole externally

located at z -- _, r : 0.6D, and 0 : 0 °. For illustrative purposes, figure 1 also shows an

extended array of four piezoelectric actuators. All piezoelectric arrays considered in this

paper were distributed around the circumference of the cylinder at z : _. Each actuator

had an axial length of 3.8cm and a circumferential length of 6.4cm.



Figure 1. Cylinder - Piezoelectric Actuator Model.

A schematic of the neural network is shown in figure 2. The unknown, complex

interconnection weights Wji and Tkj , which link the nodes, are randomly initialized
and then iteratively adjusted by a back-propagation (gradient) procedure. The complex

outputs yj and ck of each network layer can then be determined. Starting with the complex

reference inputs ri, the output Yj of the first layer is

i=1

(1)

where Nr is the number of reference inputs. Herein, it is assumed that all reference inputs

are unity, that is, r i : 1 (i : 1, 2, ..., Nr). Usually a sigmoid (nonlinear) function 3 is

assumed for f(z), although in this work, because it is not needed, the identity function

f(z) - z is substituted. For the same reason, all complex offset biases aj are nuUed.
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Figure 2. Neural Network Schematic.

The controller outputs ok, which are the piezoelectric actuator inputs, are computed

from the second layer relations

ck = g(_ Tkjyj + bt) (2)
j=l



where N h is the number of hidden nodes (outputs from first layer). Again, instead of

a sigmoid function, it is assumed that g(z) = z and all biases bk are again nuUed. The

unknown interconnection weights T k _ for the second layer are also determined by the back-

propagation process. When this is _one the controller inputs c k (k = 1, 2, ..., No) to each

piezoelectric actuator can be determined. It is assumed in this paper that the number of

reference inputs, the number of hidden units, and the number of actuators are equal, that

is, Nr = Nh = Nc.
The cylinder and piezoelectric actuator model is represented by the third and last

layer of the network configuration. The elements of the complex transfer matrix Hm_

represent the acoustic pressure at the m Ch error microphone due to a unit control input

ck = 1 on the k th piezoelectric actuator. The elements of Hmk were computed a priori by a

known analytical procedure 1, although the elements of Hra k could have been determined by

experiment. The total acoustic pressure, at a single error microphone, inside the cylinder is

therefore a superposition of the offending primary noise field pm and the acoustic pressure

(control field) produced by the control actuator forces 1. The total pressure Am at an error

microphone is thus given by
Nc

Am = ___ HmkC k "}-Pm (3)
k=l

where Nc is the number of actuators, pm is the primary field at microphone ra, and the

summation represents the response due to all control actuator forces. For the calculations

presented in this paper, three arrays of error microphones, located at z = _, z = .5_, and

z = -_4_, were utilized. Each array contained 36 error microphones, uniformly distributed

around the inside cylinder wall.

The cost function E, which will be minimized by iteratively updating the interconnection

weights Wji and Tkj of the neural network, is defined as the sum of the squares of the

microphone pressures Am, plus an additional penalty term 4. Therefore,

Np Nc ckc_

E = (1- IA I2+ 1+ i
m=l k=l

(4a)

where Np is the number of error microphones and * indicates a complex conjugate. The

first term in equation (4a) is the pressure term and the second term is the penalty term.

The value for _ determines the relative weighting of the pressure and penalty terms during

adaptation. If )_ = 0, then the microphone responses (pressure term) are minimized

without constraint (penalty term). However, if _ _ 0, then the total cost function is

minimized and, depending on the value of ),, a penalty is imposed for actuator effort. A

value of _ = 0.001 was used for all calculations presented in this paper.

The purpose of the penalty term (second term in eq. 4a) is to determine (identify) those

actuators not contributing significantly to the reduction of interior noise and to effectively

null the outputs of these actuators. In this way, the degrees of freedom of the controller

are reduced. Disregarding _, the penalty term is bounded between 0 and 1.0. Thus, a

large actuator effort which provides a significant reduction in the pressure term will not be

offset by an increase in the penalty term. However, for a small actuator effort that does

not provide a significant cost reduction through the pressure term, the penalty term will



have a greater effect. In this case, the penalty term will tend to drive the outputs of the
ineffective actuators to zero.

The cost reduction in decibels is defined as follows:

EdB= lO'Ol°g (4b)

The interconnection weights in the neural network are adjusted using a modified version of

the complex, back-propagation algorithm. 3,4 The following equations are found by taking

the partial derivative of the cost function with respect to the adjustable weights in the

neural network. If an error at the piezoelectric actuators is defined as

ck

m=l

then the weights are updated according to

T_? 1= T_j -e$_l)y; (5b)

where _ controls the rate of learning and n is the iteration index. Continuing backwards

through the network, the Wji interconnection weights of the first layer are updated in a

similar manner. First, let
Nc

6J 2)= )d(z; ) E _gl)T;J (6a)

k=l

which, in essence, accounts for the back-propagation of the error at the actuators to the

hidden nodes. The weights are then updated according to

W;+I= W_}- e6J2)r * (6b)

The complex offset values bk and aj can be adjusted iteratively in a similar manner,

however, in this work these quantities were nulled.

DISCUSSION OF RESULTS

Results are summarized in Tables I and II for the cylinder model and neural net

controller illustrated in figures 1 and 2. The excitation frequency is 200Hz, which is

very near the resonant frequency of a cos 20 cavity mode. Hence, a strong cos 20 modal

response is excited in the cavity by the cylinder wall vibrations 1.

Table I presents the cavity noise reduction achieved with four actuators equally spaced

around the midsection of the cylinder. It should be noted that this is a near optimum

actuator configuration for this (cos20) response situation. The least-squares results 1,

which achieves a 17.5dB noise reduction, represents an exact solution of this optimization
problem. The unpenalized (A = 0) and penalized (_ = 0.001) neural net solutions (eqs. 5

and 6), which are nearly identical, converge very close to the exact solution. Convergence

of the neural net solution was not further studied in this paper. All calculations are based
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on 50,000 learning iterations and a learning rate parameter of e = 0.1. The cost reduction

based on integrating the square of the interior pressure over the interior volume 1 was

also calculated. A value of 17.5dB was again obtained, thus establishing that the noise

reduction occurred over the total enclosed volume of the cylinder.

In Table II results are presented for an eight actuator configuration. In this case the cost

reduction remains 17.5dB for all solution types. The exact, least-squares solution indicated

that the amplitudes for the additional actuators, located at 45 ° , 135 ° , 225 ° , and 315 ° , are

significantly smaller than the amplitudes for the other actuators. The unpenalized neural

net solution (eqs. 5 and 6, _ = 0) again agrees very closely with the exact, least-squares
solution.

Also presented in Table II are the neural net results using a penalty term in the cost

function (eq. 4a) with _ = 0.001. This approach penalizes nodes in the neural net which

provide negligible actuator outputs and eliminates these nodes from the solution. The

noise reduction remains constant at 17.5 decibels. The actuator amplitudes for all three

solutions are in excellent agreement. In this case the neural net effectively eliminates the

actuators at 45 ° , 135°,225°,315 ° from the back-propagation solution.

SPL, dB

0 -50

:#_:_: .:_:_,

(A) NO CONTROL (B) NEURAL NET, .-S= 0.OO1 (C) LEAST-SQUARES

Figure 3. Comparison of noise reduction solutions, source plane (z = _).

Finally, figure 3 compares the noise reductions produced in the source plane (z = {)

by the neural net, part (b), and least-squares solutions, part (c). The no control case, part

(a), is shown for reference. The neural net solution is seen to be nearly identical to the

exact, least-squares solution, as might weU be inferred from the actuator amplitudes given
in Table II.

CONCLUDING REMARKS

The purpose of this paper was to demonstrate the feasibility of coupling neural net

controllers with piezoelectric actuators in order to implement active, structural acoustic

control. The application was directed at using a neural network to activate the minimum

number of actuators in a large, pre-positioned array necessary to produce the most effective
noise reductions.
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A neural network, by nulling the controller inputs to the least effective actuators,

adaptively configures the array in an optimal positional sense. Furthermore, from

the analytical modeling approach used in this paper, it appears that back-propagation

solutions, used with neural networks, may be numerically more robust than are the

direct (matrix inversion) solutions used with quadratic optimization problems. This is

particularly true when the optimal solution lies in a low-gradient region of the cost function.

This typically occurs when the controller has redundant degrees of freedom. In such cases,

the quadratic optimization solution may yield a system matrix which is nearly singular.

However, with a neural network the redundant degrees of freedom are effectively nul]ed.

With regards to future work, the convergence properties of neural networks for active,

structural acoustic, control applications need to be further studied, particularly with

regards to the effects of learning rate, the number of learning cycles, and types of penalty
functions. The use of nonlinear sigmoid functions and other on/off threshold switching

schemes should also be investigated.
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Table I. Interior Noise Reduction for Four Actuators

Solution
method

Eqs. (5), (6)
_-0

Eqs. (5), (6)
)_ - 0.001

Least

squaxes 1

Actuator amplitude and phase versus locatiol

Cost
reduction

dB 0 ° 90 ° 180 ° 270 °
17.5 52.9 41.4 35.9 41.4

26.9 ° -148.8 ° 29.9 ° -149.2 °

17.5 51.2 41.5 41.6
27.6 ° -149.6 ° -149.6 °

17.5 53.9

27.0 °

41.1

-149.3 °

37.0
30.1 °

35.3

30.3 °

41.1

-149.3 °

Table II. Interior Noise Reduction for Eight Actuators

Solution
method

Cost

reduction
dB

Eqs. (5), (6) 17.5

_=0

Eqs. (5), (6) 17.5

,_ ----0.001

17.5Least

squares I

0 °

52.1

28.5 °

51.2

27.7 °

54.7

28.3 °

Actuator amplitude and phase versus location

45 ° 90 ° 135 °

2.7 41.4 1.7

117.5 ° -150.1 ° -90.9 °

0.0 41.7 0.0

-150.0 °

3.0 40.9 2.9

85.3 ° -149.2 ° -84.6 °

180 °

35.7

30.2 °

37.1

30.3 °

34.8

28.2 °

225 ° 270 ° 315 °

1.9 42.0 2.8

-100.9 ° -150.3 ° -124.3 °

0.0 41.2 0.0

-149.4 °

2.9 40.9 3.0

-84.6 ° -149.2 ° 85.3 °
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